Package: csalert (via r-universe)

November 5, 2024

,
Title Alerts from Public Health Surveillance Data
Version 2024.6.24
Description Helps create alerts and determine trends by using various methods to analyze public health surveillance data. The primary analysis method is based upon a published analytics strategy by Benedetti (2019) <doi:10.5588 pha.19.0002="">.</doi:10.5588>
Depends R (>= 3.3.0)
License MIT + file LICENSE
<pre>URL https://www.csids.no/csalert/, https://github.com/csids/csalert</pre>
BugReports https://github.com/csids/csalert/issues
Encoding UTF-8
LazyData true
Imports data.table, magrittr, ggplot2, glm2, cstidy, cstime, lubridate, stringr, surveillance
Suggests testthat, knitr, rmarkdown, rstudioapi, glue, covidnor, csdata, csmaps, ggrepel, plnr
RoxygenNote 7.2.3
VignetteBuilder knitr
Config/pak/sysreqs libicu-dev
Repository https://csids.r-universe.dev
RemoteUrl https://github.com/csids/csalert
RemoteRef HEAD
RemoteSha e39cd720028b613898179b846155571686944461
Contents
add_holiday_effect

2 prediction_interval

```
      short_term_trend
      3

      short_term_trend_sts_v1
      5

      signal_detection_hlm
      6

      simulate_baseline_data
      7

      simulate_seasonal_outbreak_data
      9

      simulate_spike_outbreak_data
      10

      Index
      11
```

add_holiday_effect

Holiday effect ---

Description

The effect of public holiday on a time series of daily counts

Usage

```
add_holiday_effect(data, holiday_data, holiday_effect = 2)
```

Arguments

data A csfmt_rds data object

holiday_data dates

holiday_effect Ending date of the simulation period.

Value

A csfmt_rts_data_v1, data.table containing

Description

Prediction thresholds

Usage

```
prediction_interval(object, newdata, alpha = 0.05, z = NULL, ...)
```

Arguments

object Object newdata New data

alpha Two-sided alpha (e.g 0.05)

z Similar to alpha (e.g. z=1.96 is the same as alpha=0.05)

.. dots

prediction_interval.glm

```
\label{lem:prediction_interval.glm} Prediction\ thresholds
```

Description

Prediction thresholds

Usage

```
## S3 method for class 'glm'
prediction_interval(
  object,
  newdata,
  alpha = 0.05,
  z = NULL,
  skewness_transform = "none",
  ...
)
```

Arguments

```
object

newdata

New data

alpha

Two-sided alpha (e.g 0.05)

Z

Similar to alpha (e.g. z=1.96 is the same as alpha=0.05)

skewness_transform

"none", "1/2", "2/3"

...

dots
```

short_term_trend

Determine the short term trend of a timeseries

Description

The method is based upon a published analytics strategy by Benedetti (2019) <doi:10.5588/pha.19.0002>.

4 short_term_trend

Usage

```
short_term_trend(x, ...)
## S3 method for class 'csfmt_rts_data_v1'
short_term_trend(
  Х,
  numerator,
  denominator = NULL,
  prX = 100,
  trend_isoyearweeks = 6,
  remove_last_isoyearweeks = 0,
  forecast_isoyearweeks = trend_isoyearweeks,
  numerator_naming_prefix = "from_numerator",
  denominator_naming_prefix = "from_denominator",
  statistics_naming_prefix = "universal",
  remove_training_data = FALSE,
  include_decreasing = FALSE,
  alpha = 0.05,
)
```

1)) from the returned dataset.

Arguments

```
Data object
Х
                  Not in use.
                  Character of name of numerator
numerator
                  Character of name of denominator (optional)
denominator
prX
                  If using denominator, what scaling factor should be used for numerator/denominator?
trend_isoyearweeks
                  Same as trend_dates, but used if granularity_geo=='isoyearweek'
remove_last_isoyearweeks
                  Same as remove_last_dates, but used if granularity_geo=='isoyearweek'
forecast_isoyearweeks
                  Same as forecast_dates, but used if granularity_geo=='isoyearweek'
numerator_naming_prefix
                  "from_numerator", "generic", or a custom prefix
denominator_naming_prefix
                  "from_denominator", "generic", or a custom prefix
statistics_naming_prefix
                  "universal" (one variable for trend status, one variable for doubling dates), "from_numerator_and_prX"
                  (If denominator is NULL, then one variable corresponding to numerator. If de-
                  nominator exists, then one variable for each of the prXs)
remove_training_data
                  Boolean. If TRUE, removes the training data (i.e. 1:(trend_dates-1) or 1:(trend_isoyearweeks-
```

```
short_term_trend_sts_v1
```

include_decreasing

If true, then *_trend*_status contains the levels c("training", "forecast", "decreasing", "null", "increasing"), otherwise the levels c("training", "forecast", "notincreasing", "increasing").

alpha

Significance level for change in trend.

Value

The original csfmt_rts_data_v1 dataset with extra columns. *_trend*_status contains a factor with levels c("training", "forecast", "decreasing", "null", "increasing"), while *_doublingdays* contains the expected number of days before the numerator doubles.

Examples

```
d <- cstidy::nor_covid19_icu_and_hospitalization_csfmt_rts_v1
d <- d[granularity_time=="isoyearweek"]
res <- csalert::short_term_trend(
    d,
    numerator = "hospitalization_with_covid19_as_primary_cause_n",
    trend_isoyearweeks = 6
)
print(res[, .(
    isoyearweek,
    hospitalization_with_covid19_as_primary_cause_n,
    hospitalization_with_covid19_as_primary_cause_trend0_41_status)])</pre>
```

short_term_trend_sts_v1

Determine the short term trend of a timeseries

Description

The method is based upon a published analytics strategy by Benedetti (2019) <doi:10.5588/pha.19.0002>. This function has been frozen on 2024-06-24. It is designed to use sts

Usage

```
short_term_trend_sts_v1(sts, control = list(w = 5, alpha = 0.05))
```

Arguments

sts Data object of type sts.

control Control object, a named list with several elements.

w Length of the window that is being analyzed.alpha Significance level for change in trend.

Value

sts object with the alarms slot set to 0/1 if not-increasing/increasing.

Examples

```
d <- cstidy::nor_covid19_icu_and_hospitalization_csfmt_rts_v1
d <- d[granularity_time=="isoyearweek"]
sts <- surveillance::sts(
   observed = d$hospitalization_with_covid19_as_primary_cause_n, # weekly number of cases
   start = c(d$isoyear[1], d$isoweek[1]), # first week of the time series
   frequency = 52
)
x <- csalert::short_term_trend_sts_v1(
   sts,
   control = list(
     w = 5,
     alpha = 0.05
)
plot(x)</pre>
```

Description

The method is based upon a published analytics strategy by Benedetti (2019) <doi:10.5588/pha.19.0002>.

Usage

```
signal_detection_hlm(x, ...)
## S3 method for class 'csfmt_rts_data_v1'
signal_detection_hlm(
    x,
    value,
    baseline_isoyears = 5,
    remove_last_isoyearweeks = 0,
    forecast_isoyearweeks = 2,
    value_naming_prefix = "from_numerator",
    remove_training_data = FALSE,
    ...
)
```

simulate_baseline_data 7

Arguments

```
Data object
Χ
                  Not in use.
value
                  Character of name of value
baseline_isoyears
                  Number of years in the past you want to include as baseline
remove_last_isoyearweeks
                  Number of isoyearweeks you want to remove at the end (due to unreliable data)
forecast_isoyearweeks
                  Number of isoyearweeks you want to forecast into the future
value_naming_prefix
                  "from numerator", "generic", or a custom prefix
remove_training_data
                  Boolean. If TRUE, removes the training data (i.e. 1:(trend_isoyearweeks-1))
                  from the returned dataset.
```

Value

The original csfmt_rts_data_v1 dataset with extra columns. *_trend*_status contains a factor with levels c("training", "forecast", "decreasing", "null", "increasing"), while *_doublingdays* contains the expected number of days before the numerator doubles.

Examples

```
d <- cstidy::nor_covid19_icu_and_hospitalization_csfmt_rts_v1
d <- d[granularity_time=="isoyearweek"]
res <- csalert::signal_detection_hlm(
    d,
    value = "hospitalization_with_covid19_as_primary_cause_n",
    baseline_isoyears = 1
)
print(res[, .(
    isoyearweek,
    hospitalization_with_covid19_as_primary_cause_n,
    hospitalization_with_covid19_as_primary_cause_forecasted_n,
    hospitalization_with_covid19_as_primary_cause_forecasted_n_forecast,
    hospitalization_with_covid19_as_primary_cause_baseline_predinterval_q50x0_n,
    hospitalization_with_covid19_as_primary_cause_baseline_predinterval_q99x5_n,
    hospitalization_with_covid19_as_primary_cause_n_status
)])</pre>
```

simulate_baseline_data

Simulate baseline data — Simulation of baseline data.

Description

This function simulates a time series of daily counts in the absence of outbreaks. Data is simulated using a poisson/negative binomial model as described in Noufaily et al. (2019). Properties of time series such as frequency of baseline observations, trend, seasonal and weekly pattern can be specified in the simulation.

Usage

```
simulate_baseline_data(
    start_date,
    end_date,
    seasonal_pattern_n,
    weekly_pattern_n,
    alpha,
    beta,
    gamma_1,
    gamma_2,
    gamma_4,
    phi,
    shift_1
)
```

Arguments

start_date Starting date of the simulation period. Date is in the format of 'yyyy-mm-dd'.
end_date Ending date of the simulation period. Date is in the format of 'yyyy-mm-dd'.
seasonal_pattern_n

Number of seasonal patterns. For no seasonal pattern seasonal_pattern_n = 0. Seasonal_pattern_n = 1 represents annual pattern. Seasonal_pattern_n = 2 indicates biannual pattern.

weekly_pattern_n

Number of weekly patterns. For no specific weekly pattern, weekly_pattern_n = 0. Weekly_pattern_n = 1 represents one weekly peak.

alpha The parameter is used to specify the baseline frequencies of reports beta The parameter is used to specify to specify linear trend

gamma_1 The parameter is used to specify the seasonal pattern
gamma_2 The parameter is used to specify the seasonal pattern

gamma_3 The parameter is used to specify day-of-the week pattern

gamma_4 The parameter is used to specify day-of-the week pattern

phi Dispersion parameter. If phi =0, a Poisson model is used to simulate baseline

data.

shift_1 Horizontal shift parameter to help control over week/month peaks.

Value

A csfmt_rts_data_v1, data.table containing a time series of counts

```
wday day-of-the weekn cases
```

Examples

```
baseline <- simulate_baseline_data(
start_date = as.Date("2012-01-01"),
end_date = as.Date("2019-12-31"),
seasonal_pattern_n = 1,
weekly_pattern_n = 1,
alpha = 3,
beta = 0,
gamma_1 = 0.8,
gamma_2 = 0.6,
gamma_3 = 0.8,
gamma_4 = 0.4,
phi = 4,
shift_1 = 29 )</pre>
```

simulate_seasonal_outbreak_data

Simulate seasonal outbreaks —

Description

Simulation of seasonal outbreaks for syndromes/diseases that follows seasonal trends. Seasonal outbreaks are more variable both in size and timing than seasonal patterns. The number of seasonal outbreaks occur in a year are defined by n_season_outbreak. The parameters week_season_start and week_season_end define the season window. The start of the seasonal outbreak is drawn from the season window weeks, with higher probability of outbreak occurs around the peak of the season (week_season_peak). The seasonal outbreak size (excess number of cases that occurs during the outbreak) is simulated using a poisson distribution as described in Noufaily et al. (2019).

Usage

```
simulate_seasonal_outbreak_data(
  data,
  week_season_start = 40,
  week_season_peak = 4,
  week_season_end = 20,
  n_season_outbreak = 1,
  m = 50
)
```

Arguments

data A csfmt_rds data object

week_season_start

Starting season week number

week_season_peak

Peak of the season week number

week_season_end

Ending season week number

n_season_outbreak

Number of seasonal outbreaks to be simulated

Parameter to determine the size of the outbreak (m times the standard deviation

of the baseline count at the starting day of the seasonal outbreak)

Value

m

A csfmt_rts_data_v1, data.table

simulate_spike_outbreak_data

Simulate spiked outbreaks —-

Description

Simulation of spiked outbreak as described in Noufaily et al. (2019). The method for simulating spiked outbreak is similar to seasonal outbreaks simulation but they are shorter in duration and are added only the last year of data (prediction data). Spiked outbreaks can start at any week during the prediction data

Usage

```
simulate_spike_outbreak_data(data, n_sp_outbreak = 1, m)
```

Arguments

data A csfmt_rds data object

n_sp_outbreak Number of spiked outbreaks to be simulated

Parameter to determine the size of the outbreak (m times the standard deviation

of the baseline count at the starting day of the seasonal outbreak)

Value

A csfmt_rts_data_v1, data.table

Index

```
add_holiday_effect, 2

prediction_interval, 2

prediction_interval.glm, 3

short_term_trend, 3

short_term_trend_sts_v1, 5

signal_detection_hlm, 6

simulate_baseline_data, 7

simulate_seasonal_outbreak_data, 9

simulate_spike_outbreak_data, 10
```